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WHAT IS A QUANTUM 
COMPUTER?
The term of quantum computer 
encompasses a large variety of phy-
sical implementations. All have in 
common the (more or less precise) 
manipulation of individual objects 
with quantum properties: the spin 
of electrons, the energy levels of 
atoms, the polarization of photons, 

or even current loops in electrical 
circuits. Most quantum computing 
systems are engineered so that only 
two states — usually called |0> and 
|1> — of these individual objects are 
reachable during a computation. 
What is quantum about these ob-
jects is that they can not only be in 
state |0> or in state |1> (as would be 
the case for classical bits), but also 

https://doi.org/10.1051/photon/202513166  

in an arbitrary superposition of both: 
|ψ> = α|0> + β|0>, with α and β two
complex numbers.

More importantly, these two-level 
systems, usually called qubits (for 
quantum bits), can be coupled to one 
another by special operations: two 
neighboring atoms can be coupled via 
a van der Waals interaction, two elec-
trical circuits by a capacitive coupling, 

Quantum computers regularly make the headlines, with optimistic claims (often issued 
by companies large and small) alternating with pessimistic rebuttals (often by academic 
labs): sometimes they supposedly solve outstanding hard computational problems, 
sometimes their performances are dwarfed by classical machines. The goal of this article 
is to shed light on this back-and-forth, and explain what quantum computing could really 
be useful for.
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for instance. This coupling generates 
a quintessentially quantum property 
called entanglement: the joint state 
of two entangled qubits cannot be 
described by specifying the indivi-
dual state of each qubit. Hence, the 
state of two qubits, described by the 
superposition α0|00>  + α1|01> + α2|10> + 
α3|11>  can in general not be factorized 
as (α1|0> + β1|1>)(α2|0> + β2|1>). n qubits 
are thus described by 2n coefficients. 
Conversely, N complex numbers 
could a priori be stored in log2N qubits!  
This exponential storage capacity can 
be leveraged in some algorithms, with 
an important caveat: reading out the 
information stored in the coefficients 
is not straightforward. Indeed, mea-
suring a qubit in state α|0> + β|1> will 
only return 0 or 1 with respective pro-
babilities given by the squared modu-
lus of α and β. More than that, it will 
project the state to |0> or |1>. Learning 
the precise value of α and β thus re-
quires more work than meets the eye.

HOW TO PROGRAM A QUANTUM 
COMPUTER?
A quantum program is a list of ins-
tructions that evolve the state |Ψ>  
of the quantum computer from an 
initial state to a desired final state, 
which one can subject to quantum 
measurements in order to read off 
the solution to the problem at hand. 
From a physical perspective, these 
instructions essentially define a 
time-dependent Hamiltonian which, 
through Schrödinger’s equation, 
completely determines the evolu-
tion of the system. The sequence 
of these instructions is commonly 
represented as a quantum circuit: 
a diagram whose horizontal lines 
represent qubits, and boxes repre-
sent the instructions, aka quantum 
gates that act on one, two or more 
qubits (lines) in a given order. For 
instance, the circuit used to im-
plement a Fourier transform on a 
quantum computer is displayed in 

Fig. 1 for five qubits. Some gates 
(like the so-called Hadamard gate 
H) act on one qubit, corresponding 
to physical operations that act only 
on one qubit. They can put the qu-
bit in a superposition state, but do 
not create entanglement. Some 
others (like the controlled-phase 
gates), act on two qubits, and may 
create entanglement.

A major theoretical advantage of 
quantum computers is that their 
quantum properties — superposi-
tion and entanglement — should 
afford them a computational advan-
tage over classical processors. We 
can look at the Fourier transform 
circuit of Fig. 1 to understand this. 
On a quantum computer, executing 
a gate corresponds to a single opera-
tion, while on a classical computer, a 
generic quantum gate corresponds to 
a matrix-vector multiplication U • |ψ>. 
Since the vector in question is gene-
rally represented with size 2n 
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in a classical computer memory, this 
operation has an exponential cost in 
the number  n of qubits. Bookkeeping 
all operations in the circuit, we ar-
rive at a cost that scales as n2n on a 
classical computer (the cost of a fast 
Fourier transform), while it scales as 
n2 on the quantum computer: this is 
an exponential gain!

Yet, this impressive gain has 
strings attached, with a theoretical 
limitation and a practical one. Let 
us first dwell on the theoretical one. 
Supposing the coefficients α0, α0,…, 
α2n–1, of the Fourier transformed 
state |ψ> correspond to the values 
of pixels of an image we would like 
to recover. Given the probabilistic 
nature of quantum measurements, 
to obtain these very coefficients, we 
need at least 2n readouts to learn 
the histogram (which, in fact, is 
only enough to learn the modulus 
of the αi’s)… And because of the 
projective nature of quantum mea-
surements, this means repeating the 
circuit at least 2n times… causing us 
to lose the exponential advantage. 
This rule has only one exception: if, 
from all the coefficients, only a few 
(let us say only one, the kth one, αk) 
are nonzero, then the result of rea-
ding out the final state is always the 
same: it returns k with probability 
1. Thus, only one circuit execution 
and readout are required. If mo-
reover, the solution of our problem 
was to find k, then we have indeed 
obtained a speedup. In other words, 
in many quantum algorithms, acce-
leration can be reached only when 
the final distribution of coefficients 
is highly skewed (peaked), and the 
solution can be read off the peaks 

of the distribution. This is typically 
what Peter Shor’s famous factoring 
algorithm does [1]. This is also what 
makes it difficult to invent efficient 
quantum algorithms for machine 
learning: it usually involves reading 
out a lot of information (in additio-
nal to loading a lot of training data, 
which is also costly) [2].

The second limitation is practical: 
quantum states are fragile to exter-
nal classical influence. This means 
that the longer a computation, the 
more likely it is to be destroyed by 
external influence. This deleterious 
influence, called decoherence, de-
grades the quality of quantum states, 
called fidelity, exponentially with the 
number of gates. Hence, with current 
processors, only 100-1000 gates can 
be applied before too much harm 
happens. The quantum Fourier trans-
form we mentioned above, with its 
n2 gates, is already out of reach: with 
n = 100 qubits, it would require about  
10 000 gates!

The art of quantum algorithmics 
thus boils down to finding creative 
ways to extract computational advan-
tage despite these limitations.

WHAT USES FOR QUANTUM 
COMPUTERS?
The first concern of Richard 
Feynman, when he advocated the 
use of machines with quantum in-
side, was however not these intrin-
sically quantum limitations, but 
those of classical computers [3]. He 
had in mind a major conundrum of 
modern physics called the many-bo-
dy problem. Ubiquitous in mate-
rials science, quantum chemistry, 
or nuclear physics, this problem 
arises in systems where interactions 
between particles matter. For ins-
tance, in solids, interactions between 
electrons are suspected to be the 
main origin of high-temperature su-
perconductivity. Yet, interactions are 
also precisely the reason why these 
problems are difficult to tackle with 
classical computers: so-called mean-
field approaches fail, and the more 
advanced methods that have been de-
veloped in the last fifty years all reach 
an exponential wall in some regime. 
For instance, tensor network tech-
niques are sensitive to the amount of 
entanglement in the problem: their 
price scales exponentially with this 
entanglement. Monte-Carlo methods 
suffer from so-called sign problems 
that lead to statistical errors that di-
verge exponentially with system size 
or at low temperature [4].

Feynman pointed out that quantum 
computers, on the other hand, would 
be free from those ills, as informa-
tion is directly stored in the system, 
and time evolution happens naturally 
through Schrödinger’s equation, not 
via costly matrix vector multiplications 
(as in tensor networks) or high-dimen-
sional integrals (computed in Monte-
Carlo algorithms). In a way, by trying to 
simulate directly, namely with an artifi-
cial many-body system, the many-body 
physics that one is interested in, one 
does away with the problems of clas-
sical processors [5].

Quantum many-body problems 
are thus often believed to be among 
the first applications of quantum 
computers. As it turns out, outs-
tanding computational problems 

Figure 1. Quantum bits and quantum circuits. 
Top left: a single qubit can be in superposition 
of |0> and |1>. Bottom left: two qubits can be 
entangled. Right: Quantum circuit representing 
a Fourier transform on n = 5 qubits, 
corresponding to a classical discrete FT on a 
vector of N = 32 points. The input wave function 
requires a potentially long preparation circuit. 
The output wavefunction (which contains the 
Fourier spectrum) is not directly accessible: 
only probabilistic measurements give access to 
the largest amplitudes.
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Figure 2. Analogy between interferometry in optics and quantum phase estimation 
with a quantum circuit. Left: interference between more waves leads to enhanced 
accuracy (sharper peaks) in the determination of the phase. Likewise, more phase 
qubits lead to a better precision.

outside of physics can also be regarded 
as many-body problems: a number of 
challenging optimization problems, 
like the famous travelling salesperson 
problem (find the shortest route to visit 
each city once and only once in a road 
network), can also be expressed as “in-
teracting” Hamiltonians. Here, instead 
of physical interactions, interactions 
translate the fact that the different 
conditions on the sought-after solutions 
are interdependent. Thus, quantum 
time-evolution algorithms that relax 
the system to its resting state — which 
is hopefully the solution to the problem 
— were developed in this field of com-
binatorial optimization. Specialized 
computers called quantum annealers 
were even specifically constructed for 
tackling these very problems, with a 
major limitation: in principle, reaching 
the resting state takes very long times…

A second large class of quantum al-
gorithms combines the natural time 
evolution afforded by quantum pro-
cessors with another central physical 
phenomenon called interference: as in 
optics, adding two (or more) coherent 
waves yields a signal where the phase 
difference between the waves is easy 
to read out (see Fig. 2). Likewise, quan-
tum computers engineer interferences 
between two (or more) signals whose 
phase difference contains the solution 
to a hard problem [6]. This algorithm, 
called quantum phase estimation, 
underlies Shor’s factoring algorithm: 

the fact that the final distribution is 
peaked, as mentioned earlier, is a direct 
result of having many signals interfere 
in a smart way. Surprisingly, this phe-
nomenon can also be used to invert sys-
tems of linear equations Ax = b. In this 
algorithm, the inversion is realized in 
a time that is exponentially faster than 
inverting the same linear system with 
classical algorithms [7]. Since linear 
systems are central to many applica-
tion fields like solving partial differen-
tial equations, this has prompted many 
industrial companies to enter the field 
of quantum computing.

WILL QUANTUM COMPUTERS BEAT 
CLASSICAL COMPUTERS?
With the increasing availability of proto-
type quantum processors at the turn of the 
2010s, these optimistic ideas were put to 
the test of reality in the last decade. In par-
ticular, practical implementations all face 
the exponential fidelity wall that we dis-
cussed above. With the error rates of cur-
rent prototypes, between 1% and 0.1%, 
the number of gates that can be executed 
before decoherence sets in is limited to 
a few hundreds or thousands. This rules 
out all algorithms based on interference, 
which use a quantum Fourier transform 
and/or long, and therefore gate-intensive, 
time evolutions: applications like facto-
ring numbers or inverting linear systems 
of equations are out of reach due to cur-
rent (and mid-term) noise levels. In fact, 
even drastic improvements will not 
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help much without the help of quan-
tum error correction, a concept that 
Peter Shor borrowed from classical 
computers in the mid-1990s to fight 
against decoherence [8], and that we 
will touch on later.

CAN WE NEVERTHELESS 
SALVAGE SOMETHING FROM 
CURRENT PROCESSORS?
This goal is pursued by many resear-
chers and engineers, with efforts 
to create algorithms that are short 
enough to beat decoherence, while 
at the same time overpowering clas-
sical processors.

To this aim, an old method, the 
variational method, was revisited 
with a quantum twist: to minimize 
the energy <ψ(θ⃗) |H|ψ(θ⃗)>of a family 
of parameterized states, one uses a 
quantum computer to prepare a state 
|ψ(θ⃗)> and measure its energy, and a 
classical processor to propose new 
parameters θ⃗ to reach a minimum of 
the energy landscape, as illustrated 
in Fig. 3. If the quantum computer 
can prepare states |ψ(θ⃗)> that are 
out of the reach of the best classical 

algorithms and measure their energy 
with high accuracy, this method, du-
bbed the variational quantum eigen-
solver (VQE [9]), could lead to some 
practical advantage. VQE, however, 
comes with two intrinsic limitations 
(in addition to decoherence): the 
probabilistic measurement of the 
energy requires many samples, and 
the training itself of the variational 
parameters turns out to be plagued 

with plateaus and hence exponential 
slowdowns [10]. 

 The difficulties of VQE did not 
prevent “quantum advantage” claims 
on current processors. In fact, they 
were made without using VQE. For 
instance, the Google company re-
sorted to random quantum circuits 
— which are known to produce very 
entangled states with a small amount 
of quantum gates — to argue they 
had reached “quantum suprema-
cy” over classical machines [11]. 
Their first claims were rebutted by 
tensor-network based computa-
tions [12], but the newest generation 
of processors likely reached the ini-
tial goal [13]. This is however very far 
from any useful application.

Claims for useful quantum advan-
tage were made by the IBM company 
in 2023 on a dynamical evolution 
problem [14], but they were quickly 
rebutted by classical computations, 
some of which were also based on 
tensor networks [15]. The relative ease 
with which classical computations 
reproduced or surpassed quantum 
computers can be attributed to the 
fact that physical systems usually obey 
constraints (like symmetries, conser-
vation laws) that limit the growth of 
correlations or entanglement, and 
therefore make them tractable by 
classical algorithms, up to a certain 
point. Currently, the point where 
classical algorithms cease to work is 

Figure 3. The variational quantum eigensolver algorithm... and its challenges. Left: VQE is 
a hybrid algorithm where the quantum processor (top) prepares a parameterized quantum 
state and measures the average values of the various Pauli terms that are contained in the 
Hamiltonian of the problem. These averages are combined into an estimate of the energy, 
which is used by a classical optimization algorithm to propose new parameters. The 
empirical average comes with a statistical error ∆E that leads to the so-called measurement 
problem of VQE (top right): the number N of samples required to reach chemical accuracies 
(1mHa) is very large. The energy landscape tends to be very flat for deep enough variational 
circuits, leading to trainability issues: this is the barren plateau problem (bottom right).

Figure 4. Principle of quantum error correction: by grouping several physical qubits into 
one logical qubit, one makes more noise-robust qubits, provided the physical (individual) 
error rate is lower than a certain threshold.
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still beyond the point where decoherence 
makes quantum algorithms useless.

This mixed situation of current de-
vices has prompted intense experi-
mental efforts to make quantum error 
correction (QEC) work on the leading 
hardware platforms. QEC consists in 
protecting qubits against decoherence 
by spreading the information of one “lo-
gical” qubit over many “physical” qubits, 
and performing regular local measure-
ments to detect and then correct local 
errors (see Fig. 4). Such a procedure is 
beneficial — the so-obtained logical qu-
bit is better than the individual physical 
qubits — only if the individual qubits’ er-
ror rates are below a certain threshold. 
Recent experiments have shown error 
rates below this threshold, opening 
perspectives for future QEC. However, 

the number of physical qubits required 
to implement algorithms such as time 
evolution, phase estimation or Shor’s 
algorithm exceeds one million, far 
from the number of qubits (100-1000) 
available in today’s prototypes. Going 
to these numbers will pose formidable 
scalability issues that make any predic-
tion as to the first QEC-enabled quantum 
advantage a very tall order [16]. 

Whether near-term, uncorrected hard-
ware will already provide quantum advan-
tage on niche applications like many-body 
dynamics, or if this will be achieved by 
quantum error corrected hardware with 
the more traditional, gate-intensive quan-
tum algorithms, is an open question. In 
fact, it could very well be that a clever 
blend of both paradigms delivers on the 
promises of quantum computers.  


