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Analog quantum computing with Rydberg atoms is seen as an avenue to solve hard graph
optimization problems, because they naturally encode the Maximum Independent Set (MIS) problem
on Unit Disk (UD) graphs, a problem that admits rather efficient approximation schemes on classical
computers. Going beyond UD-MIS to address generic graphs requires embedding schemes, typically
with chains of ancilla atoms, and an interpretation algorithm to map results back to the original
problem. However, interpreting approximate solutions obtained with realistic quantum computers
proves to be a difficult problem. As a case study, we evaluate the ability of two interpretation
strategies to correct errors in the recently introduced Crossing Lattice (CL) embedding. We find
that one strategy, based on finding the closest embedding solution, leads to very high qualities,
albeit at an exponential cost. The second strategy, based on ignoring defective regions of the
embedding graph, is polynomial in the graph size, but it leads to a degradation of the solution quality
which is prohibitive under realistic assumptions on the defect generation. Moreover, more favorable
defect scalings lead to a contradiction with well-known approximability conjectures. Therefore, it is
unlikely that a scalable and generic improvement in solution quality can be achieved with Rydberg

platforms—thus moving the focus to heuristic algorithms.

I. INTRODUCTION

The Unit Disk (UD)-Maximum Weighted Independent
Set (MWIS) problem is the native use case of Rydberg
quantum computing platforms due to its intimate link
with the Rydberg blockade mechanism [1-6]. However,
even if it is a NP-complete problem [7, 8], finding
approximate solutions to UD-MWIS is relatively easy
with classical algorithms [9-13]: one can get arbitrarily
close to the optimal solution in a time polynomial in
the graph size. It raises the bar for reaching a putative
quantum advantage over classical methods [14]. This
has spurred proposals to tackle the general Maximum
Independent Set (MIS) problem—which is much harder
to approximate [15, 16]—with Rydberg platforms. This
is done by mapping (or "embedding") the general MIS
problem to a larger UD-MWIS problem [1, 17, 18]. In
principle, an optimal solution of this UD-MWIS problem
is then obtained with a quantum computer, for instance
via an adiabatic evolution [19, 20], and can be interpreted
to produce a solution of the original MIS problem as
schematized in Fig. 1.

In this work, we investigate the robustness of embedding
methods to imperfections in the UD-MWIS solution:
imperfect UD-MWIS solutions, which are bound to
appear in quantum algorithms due e.g to too short
annealing times [21-23], cannot be directly mapped
back to MIS solutions. We study two complementary
interpretation methods, akin to error mitigation
methods, that handle these imperfections to reconstruct
approximate MIS solutions.

More specifically, we focus on the recently introduced

embedding called the Crossing Lattice (CL) [18], which
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FIG. 1. General procedure to solve MIS on a generic graph
by the means of an adiabatic evolution on a UD graph. Red:
selected vertices after the UD-MWIS exact resolution.

comes with a quadratic overhead in the number of
vertices. While various interpretation algorithms are
possible, we focus on two opposing strategies. The
first one, introduced as the distance strategy in Sec. II,
arguably yields UD-MWIS solutions closer to the optimal
one, but is computationally expensive. In Sec. III, we
give evidence that this strategy is limited by features
of the CL solution space. The second strategy, called
deselection strategy, proves to be inexpensive but yields
lower quality results (Sec. IV). In Sec. V we use our
numerical results to derive scaling laws and discuss their
implications in terms of the approximability of the MIS
solution with Rydberg platforms, before concluding in
Sec. VI.
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II. METHOD AND DEFINITIONS

Let G = (E,V, W) be a simple finite weighted graph with
set, of vertices V, set of edges E and weight function W :
V — R%. A subset S C V is said to be an Independent
Set (IS), or S € IS(G), when no pair of vertices in
S is adjacent in G. The MWIS problem amounts to
selecting vertices that form an IS with maximal total
weight. It is equivalent to finding a ground state of the
Ising Hamiltonian

Huwis = =63 W@ ni+U Y nmn; (1)
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where n; = 1 if the vertex i is selected and 0 otherwise.
Here, § > 0 is an energy unit and U > § is the
interaction energy which implements the independence
constraint in the limit U — +o0o. On UD graphs, this
Hamiltonian can be implemented with Rydberg atoms,
thanks to the Rydberg blockade that acts as a repulsive
interaction between neighboring atoms in the excited
Rydberg state [1, 24]. For the rest of this paper we
assume a perfect implementation of the independence
constraint, therefore ignoring the impact of the Rydberg
interaction long range tail. We also set the energy scale
to 6 = 1 and omit the notation of § from now on.

On arbitrary graphs, the MWIS problem can be reduced
to UD-MWIS by using an embedding. In this work,
for simplicity, we focus on MWIS embeddings of the
MIS problem, that is when W = 1 for the embedded
graph. We don’t expect the generalization to MWIS to
significantly change our conclusions. Formally, we define
an embedding as a polynomial-time algorithm, which
maps an instance G of MIS onto an instance Gy, of UD-
MWIS called embedding graph, and an injective function
f:IS(G) — IS (Gem) called embedding map. The map
f should preserve the weight ordering, i.e. for every pair
S, T €IS (G),

W(S) = W(T) = Wem(f(5)) 2 Wen(f(T)), (2)

where W, Wy, are the weight profiles on G, Gep,. Being
injective, f admits an inverse f~! defined on f(IS (G))
and called the interpretation map. Finally, we require
f~! to map any MWIS of Gem to an MWIS of G.

Being given an embedding scheme with some G, Gy
and f, any configuration S, € f(IS(G)) is said to be
interpretable, since f~1(Sem) is well-defined and is an IS
for G. Conversely, any configuration Se, ¢ f(IS (G))
is said to be non-interpretable. Non-interpretable states
arise due to the approximate resolution of UD-MWIS
on Gem, and they require some post-processing to be
interpreted as configurations of the initial problem on
G.

One possible strategy, which we name distance strategy,
consists in interpreting each configuration of the CL
as the nearest interpretable configuration, with regard
to the Hamming distance. This distance, denoted d,
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FIG. 2. Structure of the initial and embedding solution
spaces for a given embedding scheme, with sub-spaces of
solutions characterized by their Hamming distance d =
0,1,... to the nearest interpretable solution.

can be seen as the minimum number of bits to flip
to reach an interpretable state. We take d both as a
measure of the difficulty to apply this strategy and as a
quantity of interest to study the CL solution space. A
large d indicates that a larger part of the CL must be
explored to find the nearest interpretable configuration,
which correlates to a larger computational difficulty. As
shown in Appendix E, applying this distance strategy is
equivalent to solving a Quadratic Unconstrained Binary
Optimization (QUBO) problem closely related to an
MWIS problem on a subgraph of the original graph,
showing that it can be a difficult task. Note that our
definition of d and most subsequent discussions readily
apply to other embeddings schemes than the CL, such as
the ones discussed in App. C.

Building upon these definitions, any state with a distance
(at most) d to the nearest interpretable state is thus
called (at most) d-interpretable. With this definition,
interpretable states are characterized by d = 0, and
higher values of d are associated to states that are harder
to interpret. As illustrated in Fig. 2, this gives a layered
structure to the embedding space IS (Gep ), with easy-to-
interpret solutions at the center, and increasingly difficult
configurations around.

Throughout this article, the quality of approximate
solutions is evaluated by the approrimation ratio, as is
standard in optimization problems. For any S € IS (G),
its approximation ratio r € [0, 1] is defined as the factor
by which its weight deviates from the optimal value:

> W)
r=—"% . (3)
max W (4)
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III. DISTANCE STRATEGY AND
INTERPRETABILITY

We perform a numerical study of d-interpretable states
at low energies, obtained thanks to an exact MWIS



FIG. 3. Path embedding of a single-vertex graph into two
interpretable configurations (green highlight), with selected
vertices in red. Due to domain walls (red highlight), some
configurations with a low energy have a high Hamming
distance d to the closest interpretable configuration.

solver [25]. In Sec. IITA, we begin by applying our
methodology on a simple class of graphs called paths
graphs that can be seen as elementary components of
CL graphs. In Sec. IIIB we extend our study of the
distribution of d to CL graphs.

A. Path embeddings

A core ingredient in CL embedding is the class of path
graphs, which are UD graphs used to embed the state of
a single-vertex graph. As a preliminary, we study them
separately before looking at the CL.

For any N > 0, the (unweighted) path graph Py is
defined as N vertices vq,...,vy and edges (v;,v;41) for
all t = 1,...,N — 1. Of particular interest is the case
of the even-length path P,y. As shown in Fig. 3, in the
unweighted case, the MIS of P;y has N selected vertices
(in red) and a (N + 1)-fold degeneracy i.e. number of
configurations at the same energy. In this context, we
call domain wall the presence of two adjacent unselected
vertices. In the unweighted P»py, only two MISs have no
domain wall; they are said to be antiferromagnetic.

Antiferromagnetic configurations can be used to embed
in Pyn a single-vertex graph G = (V = {v}, E = @).
The embedding map f is defined such that f({v}) is the
antiferromagnetic state of P,y where vy is selected, and
f(@) is the other one. The fulfillment of Eq (2), and
thus the optimality of the embedded MIS of G, requires
to energetically penalize domain walls, thus lifting the
degeneracy between the two antiferromagnetic states. To
do so, we follow Ref. [18], applying a weight profile W,
parametrized by a weight bias w € (0,1/2), which reads

Wolo)  =1/2+w,
Ww(UQN) = 1/2 - w, (4)
Wev) =1 for 1<1i<2N.

We now look at the corresponding Density of States
(DoS). The number of states at each energy is displayed
in the top panel of Fig. 4 as a function of the energy

AFE = FE — Eyiwis, (5)

105 4
(%]
]
©
“ 103
Y
(o]
o)
Z 10!
" 1071 3
[0) ]
T 1072 4
-t E
o E
w1073
E 104
* 10-5
10-°

FIG. 4. (Top) Low-energy DoS in the path graph P with
1/w € {4,20}. On the left, the two interpretable states have
a gray outline to enhance readability. (Bottom) Distribution
of 74 in increasing energy windows, with an exponential decay
of 79(E) (dotted line).

and with a color scheme to indicate the distribution
of the different values of d at each energy. Note that
the energy is linearly related to the approximation ratio
r € [0,1] defined in Eq. (3), with » ~ 1 for the best
approximate solutions. A closed formula for this DoS
is derived in App. A using graph combinatorics [26, 27],
while the value of d is computed algorithmically. We
observe that, even at very low energy AFE < 1, there is a
high number of non-interpretable states with high values
of d. This can be interpreted in terms of domain walls,
introduced earlier. As shown in Fig. 3, the presence of
only one domain wall in P,y can lead to a high Hamming
distance, up to d = N. There is thus a transition around
the domain-wall energy penalty AE = 1/2 + w, with
interpretable states located at smaller energies, and non-
interpretable ones right above.

To interpret this data in terms of probability of success
after an adiabatic evolution, we look at the fraction
74(E) of at most d-interpretable states within the energy
window [Enwis, E]. Formally,

E
_ fEMWIS dw Zd/gd par(w)
- E
fEMWIS dwp(w)

where p is the total DoS and py is its restriction to d'-
interpretable states, with p = ", pa. This measures the
probability to get an easy-to-interpret state from random
picking below energy F, and is shown in Fig. 4 (bottom).
In the regime AE < 1/2 4 w, all states are interpretable

1a(E) (6)
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FIG. 5.  (a) Initial graph with N = 4 vertices, |E| = 3
edges (plain lines) and N(N — 1)/2 — |E| = 3 pairs of
non-adjacent vertices (dashed lines). (b) Corresponding CL
embedding, with N even-length paths used to embed the N
initial vertices and interconnected by N(N — 1)/2 gadgets.
Colors identify the mapping between initial vertices and paths
in the CL. (¢) Legend, with two types of gadgets subgraphs
representing initial edges (plain diamond) or their absence
(dotted diamond).

since no domain walls are allowed. When E increases and
AFE < N/4, 74(F) appears to decrease exponentially for
all values d < N, before reaching a plateau near AFE ~
N/2. This observation can be accounted for by the high
degeneracy of domain walls, which is expected to grow
exponentially with the energy. Note that this behavior is
consistent when w varies, including when w < 1 (Fig. 4,
right column), for which the energy of a configuration is
~ [/2 with [ the number of defects in the chain.

We conclude that in the path graph embedding, states
of energy above the threshold AEF = 1/2 + w
become difficult to interpret with the distance strategy,
and exponentially more so as their energy increases.
Quantum adiabatic computation should therefore aim at
energies no much greater than this threshold. In the next
section, we extend this result to CL graphs.

B. Crossing lattice embedding

Building upon the idea of the path graph embedding,
the CL scheme [18] starts by embedding the N vertices
of an initial graph G into N copies of Pyn (or Pony2).
These paths are then intertwined along a square lattice
grid, and interconnected by two types of subgraphs called
gadgets to enforce constraints caused by the presence
or absence of edges between pairs of vertices in G. A
schematic example is displayed in Fig. 5.

In what follows, we examine the DoS of CL embeddings
of unweighted random Erdés—Rényi-Gilbert graphs [28§]
with edge probability p = 1/2.  We generate 20
unweighted graphs for each size N = 3,...,7, and study
their CL embedding whose vertex count N¢p, ~ 4N? goes
from 31 to 188. The value of 1/w is taken to be 8 or 20.
These parameters are discussed in App. B, although their
exact choice is not expected to change our results.

A typical example of low-energy DoS is shown in
Fig. 6 (a, top left panel), as a function of AFE or
equivalently of the approximation ratio r, with 1 — r
AFE. The light yellow bars with dark contour on the left
are the interpretable states, and form a rescaled copy of
the initial graph DoS, with the optimal solution at the
lowest energy and solutions of increasing approximation
ratio as energy increases. The other bars represent states
with defects, which start appearing above the energy
price of a domain wall AE =1/2 —w. Note that, unlike
path embeddings, CL constraints make sure some high
weight (1/2 4+ w) vertices are unselected in the ground
states, for almost all initial graphs, such that the lowest
energy price of a defect differs from path embeddings.
The fraction of d-interpretable states 74(E) for increasing
energy windows is shown below (a, bottom left panel).
In good agreement with the analysis from Sec. IITA,
the low-energy DoS can be separated in two regimes of
energy. Under the threshold AE = 1/2—w, every state is
interpretable. Above the threshold, typical states quickly
gain a high Hamming distance d. We indeed observe that,
for d < O(N?), the fraction of d-interpretable states
T4(E) decays exponentially,

a(B) ~ oxp( g ). ™

with a characteristic energy scale E.(d) above which
states are unlikely to be better than d-interpretable. This
observation is strikingly similar to the behavior of path
graphs studied in Fig. 4. As displayed in Fig. 6 (c),
E.(d) decreases toward zero with increasing problem size
N. This is observed with a remarkably low variability
between random graph instances. Similarly as for the
path graph embedding, we conclude that states beyond
the energy threshold AE = 1/2 — w require some post-
processing, making them harder to interpret.

We now argue that this pattern is independent from the
implementation details of the CL, and can pretend to
some sort of universality. More specifically, we show that
the distribution of d is reproduced by a simple gadget-less
model of a product (disjoint unions) of path graphs. We
compare the CL of initial size N with the graph product
PN of N weighted copies of Py, both graphs having the
same w. Using N = 7 and w = 1/8, the DoS of the path
product shown in Fig. 6 (a, top right panel) is strikingly
similar to the DoS of the CL (top left panel). Next,
we consider a small w = 1/20. As in Fig. 4 (top right
panel), in this regime, the DoS features peaks located
at half-integer values of AF (in units of §). Neglecting
some gadget-induced defects with energy ~ 3/2, there
is a correspondence between energy and the number [
of domain walls, i.e. AFE ~ [/2 (see also App. B). The
DoS can thus be analyzed as a collection of peaks located
near AE ~ /2. For | € {1,2,3}, we plot in Fig. 6 (b)
the normalized cumulative distribution of d within each
of these peaks. With a low variability between the initial
graphs (errors bars are smaller than the thickness of the
line), we observe that the paths product model faithfully



a) rer rec b
1.00 0.99 098 1.00 0.99 0.98 (b)
107 1 1 1 1 1 1 70
3 1.00 e -
E I= 60
10° 4 ~— .8 0
E I=2: : U 0.75
n 10° = - —> — © 40
4] E -1 - : F =
= E I=1 - - F .
T 10* 4 B = se—>! | = 0.50 30
7] 3 | | . . . =
= 3 ] B - RN | 2
© 1073 E== N : Fm 3 025 0
2 102 4 E B
| 0.00 10
10! T T T T
0 10 20 30 40 50
100 4
d o
] (c)
1071
n ]
L 102 4 60 L,
© E
+~J E
%] 3 E
= 107° o — .
S E 5 40
[SENNNN. =
© 107 4 W
- 3 20 <
1075
107 -4 T T T TT T T T T b T T T T — 0
0 172 1 312 20 12 1 312 2 3 4 5 6 7
AE AE N
FIG. 6. (a) Low-energy sector DoS (top) and normalized cumulative DoS (bottom) for a random CL graph with initial size

N =7 (left) and for a path product Piy (right), both with weight bias w = 1/8. Gray highlight: frontier of interpretable
states. Dotted line: exponential decay ~ exp(—FE/FE.(d)) for d € {0,5}. (b) Cumulative normalized DoS restricted to energy
intervals with ~ [ € {1,2,3} domain walls and w = 1/20, both for the CL and the path product. (¢) Effect of graph size N
on the characteristic energy E.(d) at which the fraction of states with distance at most d decays for the CL, with w = 1/8.

Shaded areas indicate one standard deviation error bar.

reproduces the interpretability features of the CL. This
supports the idea that the combinatorial explosion of
hard-to-interpret states is an intrinsic feature of the CL
scheme due to the introduction of ancilla nodes in the
form of path graphs. We expect this phenomenon to be
somewhat universal and thus to exist in other embedding
methods, such as graph subdivisions [1, 29] (discussed in
App. C) and parity encoding [30, 31], where gadgets and
paths graphs introduce extensive amounts of ancillae.
From this analysis, it is natural to ask whether the choice
of weight profile W,, may affect the exponential scaling
Eq. (7). Indeed, the weight profile affects the distribution
of defects and therefore their degeneracy. A study in
this direction is presented in Appendix D, suggesting
modifications to the weight profile favor defects and
should be avoided.

IV. COMPARISON TO DESELECTION
STRATEGY

We now compare the distance strategy with a second
strategy, which is much cheaper to implement, but yields
poorer quality results. Recall that a CL configuration can
be seen as N paths that are either in an antiferromagnetic

ordering or have a domain-wall-like defect, as shown in
Fig. 3 (a). Furthermore, a path in an antiferromagnetic
ordering can be considered as selected or unselected
depending on which of its two endpoints is selected.
In that language, the deselection strategy consists in
finding the defective paths and declare them unselected.
Since a configuration is interpretable if and only if each
path has no defect, this strategy guarantees to return
an interpretable CL configuration, that is an IS of the
original graph.

In terms of computational cost, finding all defects and
deselecting chains is easily done by walking through the
CL and spotting succession of unselected vertices, which
characterize defects. Thus, the deselecting strategy
costs O(N?) to apply. Therefore, we consider that,
unlike the distance strategy, it can be applied at any
energy. The drawback of this technique is that the output
configurations are of lesser quality than the distance
strategy. To compare both strategies, we compute the
approximation ratio r obtained after interpretation in the
CL embedding of a random graph with N = 7 and MIS
size |MIS| = 3. Then, for each technique and for two
arbitrary thresholds ro € [0, 1], we show in Fig. 7 the
probability that a configuration taken at random within
the energy window [Enwis, Evwrs + AFE] yields r > rg.
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FIG. 7. Probabilities of obtaining upon interpretation an approximation ratio r > ro for two post-processing strategies, with
ro € {2/3,1}. Dotted lines: deselection strategy, for which each chain with defects is considered as unselected. Plain lines:
interpretation of the nearest interpretable state with respect to the Hamming distance d. Data for one random graph with

initial size N = 7 and MIS size [MIS| = 3.

In the case several nearest interpretable states exist,
with possibly different values of r, our definition of the
distance strategy becomes ambiguous. Our convention in
this situation is to take the lowest approximation ratio, so
that our results still give a lower bound of the advantage
of the distance strategy over the deselection strategy. We
also checked these cases are rare (less than 2.2% of states
displayed in Fig. 7), which legitimates our conclusions
irrespective of the chosen convention.

When AE > 1/2, we observe in Fig. 7 that the
distance strategy tends to output better approximation
ratios than the deselection strategy, and that this gap
increases with the energy. This advantage is expected
and we explain it as follows. First, at least in the
low-energy spectrum under study, the distance strategy
almost always leaves non-defective chains untouched.
We checked numerically that CL vertices located in
non-defective paths had to be flipped in only 0.8% of
the configurations from Fig. 7. Consequently, for the
vast majority of cases, the distance strategy outputs
configurations of the initial graph with at least as
many selected vertices than the deselecting strategy,
which translates into better approximation ratios for the
distance strategy.

It is striking that the difference in approximation ratios
for the two strategies is not very large (see also Fig. 10 in
App. B3), given the huge difference in computational
complexity.  We explain such good results for the
deselection strategy by the fact that it “corrects” some
defects, while the others are energetically unfavored.
Indeed, adding a domain wall to an unselected chain
increases the energy by 1/2 — w, versus 1/2 + w
for a selected chain, but in both cases the chain is
considered unselected after interpretation. This means
the approximation ratio is reduced in the second case
(harmful defect), but is unchanged in the first case
(harmless defect), where the interpretation strategy

acts as an error correction. On top of that, the
harmless defects are energetically favored compared to
the harmful ones, which explains the good results of
the deselection strategy at low energies, despite its
crudeness. This mechanism also explains why w can, and
in theory should, be chosen larger than 1/2 when using
interpretation methods, as detailed in Appendix B 3.

Lower bound for r with the deselection strategy. We
can find a lower bound for the approximation ratio
obtained through the deselection strategy. Consider a
configuration Scr, of the CL. Through the deselection
strategy, defective chains are replaced by unselected
chains, defining an interpretable CL configuration Sqes.
Since defects cost energy, deselecting defective chains
lowers the energy: E(S4es) < F(Scr).

By construction, the CL weight profile ensures that
flipping any chain from selected to unselected (which
is always possible without breaking the independence
constraint) increases the energy by 2w. In particular,
starting from the MWIS with its [MIS| selected chains,
any interpretable configuration with Nge selected chains
has |[MIS| — Nge less selected chains than the MWIS
and thus has an energy Eywis + 2w - (JMIS| — Nga).
Here we recall that [MIS| is the MIS size of the initial
graph. Since the approximation ratio upon interpretation
is 7 = Ngi/|MIS|, the energy of any interpretable
configuration is linearly related to its approximation ratio
upon interpretation. This applies in particular to Sges:

E(Saes) — Evwis

= ]_ —
" 2w - [MIS|

(8)

Finally, using F(Sges) < FE(ScL) we deduce a lower
bound on the approximation ratio provided by the
deselection strategy:

E _
P> (Scr) — Evwis
2w - [MIS|

9)



We point out that this bound cannot be improved since
it is saturated whenever Sy, is interpretable.

V. DISCUSSION: ASYMPTOTIC BEHAVIOR

We now consider the asymptotic limit N — 4oc0. In
this regime we expect the distance strategy to be hard
to apply, as a result of App. E. In this section we link
the previous results to complexity requirements on a
quantum UD-MWIS solver in the case of the deselection
strategy. As a first step, we prove that using the
CL embedding scheme leads to a degradation of the
approximation ratio.

A. Error amplification

From the previous section, a key quantity here is the
energy E(Scr) of a sampled CL configuration obtained
by approximate UD-MWIS optimization. Let us assume
that the quantum solver produces a number of defects
(such as domain walls) that scales as N7 for some
constant v > 0. For instance, under the Kibble-Zurek
mechanism |3, 32-35], we would get a finite density of
defects, hence v = 2. Since the energy cost of each defect
is ©(1), this implies we get configurations of energy

E = Evwis +9(N7) (10)

Using Eq. (9)-(10), the deselection strategy leads to an
approximation ratio lower bound

(N’Y) -1
> - @ = — v
r>1 2w:| 5 = 1o, (11)

where we used, in the equality, the standard assumption
IMIS| = O(N), which is verified in typical families of
graphs of interest, such as bounded-degree graphs and
some families of random graphs [36-38].

We distinguish between two regimes. When v < 1,
the deselection strategy ensures an approximation ratio
asymptotically close to 1. When v > 1, as expected in
the current state of the art, the strategy asymptotically
fails: the number of defects becomes infinitely larger than
the number of chains, such that almost certainly every
chain gets a defect and is deselected upon interpretation,
yielding » = 0.

In the CL, let us denote by [MWIScr,| the MWIS total
weight. The approximation ratio r¢r, of an IS in the CL
is related to its energy through

E — Enwis

- —. 12
IMWISc | 12

TCLzl

With the deselection strategy, the approximation ratio
after interpretation r, and before interpretation rcy,, are

thus related through Eq. (9) by

1 —reL) | MWIS
1o < Gefal el o v ), (13)
where we used the fact that [MWIScy| = O(N?).
Importantly, Eq. (13) shows that solving the MWIS
problem means solving the embedded MIS problem with
an error up to N times higher (within a bounded factor).
This amplification of the error exemplifies the limitation
of embedding schemes caused by the interpretation step.

B. Approximability theory consequences

We now discuss the consequences of the error
amplification in Eq. (13) due to the deselection strategy
in terms of approximability theory. This theory classifies
the hardness to find approximate solutions, namely the
hardness of getting close to r = 1. We will focus on three
classes of approximation: the fully-Polynomial-Time
Approximation Scheme (fPTAS) class, which describes
problems for which an approximation algorithm exists
that guarantees an error at most € in run time polynomial
in both the instance size and 1/¢; the Polynomial-Time
Approximation Scheme (PTAS) class, which also ensures
r > 1 —¢ but with a run time polynomial in the instance
size only, and that can be worse than polynomial in 1/¢;
and the APX class, which only achieves r > ¢ for some
constant ¢ < 1. Note that the terms PTAS and fPTAS
also denote the algorithms themselves (in addition to the
approximation classes).

In terms of classical approximation algorithms, the UD-
MWIS problem belongs to the PTAS class [9-13], while
the general MIS problem is APX-complete [8, 15, 39|.
MIS is thus believed to admit no PTAS. In fact, a
corollary to the PCP theorem asserts that the MIS
problem cannot be in the PTAS class (unless P=NP).
Likewise, according to the quantum PCP conjecture [40],
MIS should remain in the quantum equivalent of the APX
class even with quantum algorithms.

Let us examine how these general statements relate to
our findings. Classical PTASs exist for UD-MWIS, and
due to the PCP theorem and quantum PCP conjecture,
there cannot be any classical, and likely any quantum,
PTAS for MIS. This means that either some degradation
in the approximation ratio must happen during the
interpretation, or the interpretation algorithm (or the
embedding itself) is not polynomial in the problem size.
The distance strategy falls in the second category (it is
exponential), while the deselection strategy falls in the
first category, as it is polynomial in the problem size.

For the deselection strategy, this is embodied by Eq. 13,
showing that an error ec, = ¢&/N on the UD-
MWIS resolution translates to an error up to € on
the MIS problem. If an fPTAS were to exist for
CL graphs, it would give an fPTAS for MIS, because



Poly(Ncr,1/ecr) = Poly(N,N/e). However, this is
unlikely due to the earlier PCP considerations, excluding
the existence of a quantum or classical fPTAS for CL,
and so for UD-MWIS as a whole. On the other hand,
a PTAS for CL, which is not an fPTAS, would only
provide a super-polynomial run time, e.g. exp(1l/ecr) =
exp(N/e), and therefore would not give a PTAS for MIS,
in agreement with the PCP theorem. To sum up, PCP
considerations rule out the existence of a PTAS for MIS
and of an fPTAS for CL graphs, and so for UD-MWIS in
general.

This discussion has even more practical consequences,
i.e. in terms of number of defects. Going back to the
assumption of Eq. (10), + is related to the approximation
ratio through Eq. (11). Consider then an hypothetical
quantum solver for the CL, running polynomially in N
and with a number of defects scaling as ©(N7). With the
deselection strategy, it would solve MIS with an error
e=1-r <ONY ). If vy > 1, like in the standard
Kibble-Zurek scenario where v = 2, the explosion in the
number of defects leads to approximation ratios so poor
that no error € < 1 can be guaranteed. If v < 1, however,
this algorithm would induce a PTAS for MIS, because
the error can be made arbitrarily low by duplicating the
initial MIS graph. Indeed, having M copies of the initial
graph leads to a CL with M - N chains, guaranteeing
an error < O((MN)?~1) that vanishes at large M, but
still solved in Poly(M N) = Poly(N) time. Since this is
ruled out by the previous discussion, we conclude that,
very likely, there exists no quantum or classical CL solver
running polynomially in N with a number of defects
scaling as o(N). This statement naturally extends to
UD-MWIS in general.

In conclusion, no improvement in approximability class is
likely to happen by using an embedding of MIS in a larger
UD-MWIS problem. This represents a very practical
embodiment of the PCP theorem and its quantum
equivalent for embedding strategies. This of course does
not prevent heurtstic algorithms, namely algorithms with
no run time guarantees, from achieving good enough
approximation ratios.

VI. CONCLUSION AND OUTLOOK

In this work, we studied quantitatively the robustness
to errors of embedding techniques to solve the MIS
problem on Rydberg atom machines. We focused on
the CL construction as a case study. We highlighted the
difficulty of interpreting, or correcting, defective solutions

to the CL—which unavoidably results from realistic
adiabatic procedures—into solutions to the original MIS
problem, while retaining a high approximation ratio.

We studied two opposite strategies.  The distance
strategy produces high quality solutions in the presence
of few defects, but is untractable with large number of
defects. The deselection strategy, on the other hand, is
straightforward to apply with any number of defects, at
the expense of a worst approximation ratio. Nevertheless,
asymptotically at large N, these strategies require an
extremely small number of defects scaling as ©(1) and
o(N) respectively, to be tractable and produce non-zero
approximation ratios. With the deselection strategy, this
is a consequence of the error amplification induced by the
embedding, which is linked to an enlarged Hilbert space
with ©(N?) qubits.

Our observations on the CL graphs seem independent
from the connectivity between chains, suggesting some
form of universality, when approximating embedding
graphs. As a consequence, we expect similar results
when extending our approach to integer factorization |18,
41], QUBO problems [18, 42], and related embedding
techniques [1-4, 29-31]. We also expect the o(1/N)
requirement in the density of defects to apply to other
strategies which output better approximation ratios than
the deselection strategy.

Using approximability theory, we demonstrated that
getting a o(1/N) density of defects in polynomial time
is unlikely to be feasible, due to the quantum PCP
conjecture. Otherwise, the combination with e.g. the
deselection strategy would produce an fPTAS for MIS,
which is ruled out by this conjecture. Further work would
be required to study more precisely how this limitation is
embodied in adiabatic algorithms, in particular in terms
of energy gaps. A more realistic goal could thus be
to outperform existing approximate classical PTAS or
heuristics for UD-MWIS.
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Appendix A: DoS in paths graphs

This section introduces tools from graph theory that provide a concise notation for the DoS in MWIS problems. In
App. A2, this is used to characterize the DoS for path graphs. The following sections expand on this formalism to
treat the case of weighted paths and CL graphs.

1. Independence polynomials

To study the non-interpretable states that arise from suboptimal UD-MWIS optimization, it is convenient to borrow
several notions from the fields of combinatorics and graph theory. The independence polynomial 1P (G, W;z) is a
generalized polynomial, whose coefficient at any (possibly non-integer) degree w € R, is the number of ISs whose
vertices have a total weight w:

IP (G, W;z) = Z p2ies WO = Ty (meMWIS) . (A1)
S€IS(@)

As a reminder, the energy scale § = 1 is omitted. We will frequently drop the notation of the weight profile W in
IP (G, W) if the graph is unweighted, as well as the notation of the indeterminate . One can relate the independence
polynomial with the canonical partition function Z(8), introducing a dimensioning factor 8 which represents the
thermodynamical inverse temperature:

Z(B) = Tr (e PMuws) = 1P (G, W; 2 =e 7). (A2)

Conversely, the independence polynomial characterizes the DoS p seen as a distribution.
The partition function depends on the DoS as

2(9) = [ ape *Ep(), (A3)
Inverting this relation and replacing Z(j3) by IP (z) with the change of variable z = e™”, we get
e g B 1 E
p(E) = / —ZZ(B)ePF = — ¢ IP (2) 2P dz. (A4)
ico 20T 2im Jo

where C is an anticlockwise contour in the complex plane around the origin.

Both formulations being equivalent, we choose to work with independence polynomials due to the simplicity of
notations.

2. Unweighted paths

Let Py be the path graph with N € N vertices. A previous result from Refs [26, 27] is that
N—-k+1
YN >0, IP(Py)=) ( + )xk (A5)
k>0 k

where the summand is zero whenever k£ > [ (N +1)/2]. In particular the two first path polynomials are obtained from
a combinatorial enumeration:

IP(P) =1, IP(P)=1+au, (A6)

which is quickly verified by a combinatorial enumeration of the ISs in Py and P;. For the sake of completeness, we
mention that Eq. (A5) can be proved by induction with a well-known Fibonacci recurrence relation from Ref. [27]:

VYN >1, IP(Pyy1)=IP(Py)+x-IP(Py_1). (A7)
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Moreover, we provide an apparently new derivation of Eq. (A5) based on combinatorics. Given N, k, an IS in Py with
k selected vertices can be built by choosing how many unselected vertices are on the right and left of each selected

vertex. This amounts to choosing two non-negative integers [, r and (k — 1) positive integers my, ..., mg_1 such that

l+mi+---+mp_1+r=N—k. (A8)
Here (I,my,...,mg_1,7) characterizes the IS in Py made by the succession of | > 0 unselected vertices, then one
selected vertex, then m; > 1 unselected vertices (ensuring the independence constraint), and so on. This clearly
defines a one-to-one correspondence between the elements of IS (Py) and the possible sequences (I,m1, ..., mk_1,7).
By application of the so-called stars and bars theorem from combinatorics, one retrieves the number [l‘k} IP (Py) of
possible choices for (I,my,...,mg_1,7) with the same result as in Eq. (A5).

3. Weighted paths

Let w € (0,1/2) be a weight bias. We endow the path P,y with the weight profile W, as defined in Eq. (4). By
disjunction over which vertices in {v1,van} are selected, all ISs can be partitioned in four categories. For instance, if
vy is selected and wvo is not, then this lets 2V — 3 remaining vertices that can take any independent configuration
from the path Pyy_3. Since v contributes to a weight 1/2 + w, the polynomial z2twIpP (Pan—3) characterizes the
DosS of this category of ISs. The three other categories can be treated likewise to obtain the independence polynomial
for the weighted path Pspy:

IP (Pon, W) = IP (Pan_2) + 2% (¢ + 27 ) IP (Pon_3) + 1P (Poy _4) . (A9)

Again, this is another way to write the DoS of the corresponding Hamiltonian Hyrwis. The highest-degree terms
count in this regard ~ N non-interpretable configurations located at an energy of only 1/2 — w. This proves that the
manifold of lowly-excited ISs in P,y is filled with non-interpretable configurations.

Appendix B: Crossing lattice

This section is devoted to some formal aspects of the CL that are discussed in our main text. First, we introduce
several definitions and enumerate a family of states in the CL, which serves as a lower bound for its DoS. We conclude
by a discussion of the numerical parameters used in our study.

1. Notations

Let G be an unweighted graph with N > 1 vertices. We consider the CL embedding of G for an arbitrary ordering
of the vertices in G. Our goal is not to formalize its construction, but to introduce the vocabulary required in our
derivations. Given a path Poy = {v1,...,vy} with edges between v; and v; 11, the vertices vy, vs,...voy_1 are said to
be odd vertices while vo, vy, ..., von are called even vertices. We use the ordering convention that if Py is weighted
by Wy, then v; is always the vertex with weight 1/2 + w, in accordance with the main text.

Let us consider the path product Pi% 19, in which each path has the weight profile W, for some w and is called
a chain. As shown in Fig. 8 for the case N = 3, this graph can be drawn in 2D by arranging the N paths along
the lines of a grid lattice, following the construction of Ref. [18]. Instead of introducing UD gadgets to replicate the
edge structure from G, one can directly insert copies of the edges in G. We call the resulting graph a non-planar
CL embedding graph of G and denote it by G,;,. By identification of PH, 1o as a subgraph of G, the N chains are
still defined in G,,. Clearly, this construction of Gy, satisfies all the requirements for an embedding with the usual
interpretable states defined by having each chain in an antiferromagnetic state with IV + 1 selected vertices.

Given some configuration Sy, € IS (G,,;), we denote by C; the subset of vertices in S, that belong to the i-th chain
in G,,p. Here the ordering of the chains is the same ordering than for the vertices {v;,1 < i < N} of G they embed.
Given some C; in a chain that embeds a vertex v; € GG, we say that this chain is selected if C; is a subset of the MWIS
in Gyp, namely if the only selected vertices are odd. Because the chain itself is a copy of Py 1o with weight profile
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FIG. 8. a) The non-planar CL is a weighted path product PQJ}T\H_Q. b) Upon insertion of new edges, the resulting non-planar
CL embedding graph satisfies the criteria for an embedding graph except for the planarity. Upon insertion of suitable gadgets,
one retrieves a CL embedding graph.

Wy, this MWIS is indeed unique. Conversely, if C; only has even selected vertices, then it is said to be unselected.
Finally, we introduce two independence polynomials

Ay = (1 +x%iw) 1+2)V. (B1)

The combinatorial interpretation of these polynomials is that Ay (An,_) describes all possible subsets of the
(un)selected configuration in a weighted chain. Note that except for the empty chain which, by definition, is both
selected and unselected, this enumerates all configuration where all vertices have the same parity.

2. Lower bound on the DoS of CL graphs

Due to the dependence of G, in G, and to the hardness of computing the independence polynomials for grid graphs,
we are only interested in approximating IP (G,,,). This can be done by enumerating as many ISs in G,,, with their
respective weight, while ensuring no IS is counted twice and each IS is, indeed, an independent set. Intuitively, the
family of ISs that we will build in this section is made by considering interpretable states and allowing in each chain
different defects, depending on wether the chain embeds an initial vertex that is selected. This process will ensure
that all built configurations remain independent, in spite of the gadgets connecting the chains.

Let S € IS(G), and assume v; # v; are two vertices in S. If v; and v; are not adjacent in G, then there is in Gy,
no edge between the chain that embeds v; and the chain that embeds v;. Thus both chains can be in any of the
ISs of Ponyo, without violating the independence criterion. Conversely, let us assume that v; and v; are adjacent in
G. Then one of the odd vertices in C; is adjacent in G, to one of the odd vertices in C;. In that case if C; is in a
configuration where only even vertices are selected, and C; itself is in an IS of Poy 2, then there is no independence
violation. This can be generalized to the N vertices of G as follows. Let k = |S| be the number of selected vertices,
and i1, ...,% the indices of the vertices in G that are in S. By our previous argument, if each chain C;,,...,C;, isin
an IS of P42, and every other chain is unselected, then this defines an IS Sy, in Gy,. For a given S, all the ISs

that are built by this process define a DoS whose corresponding independence polynomial is IP (P2, Ww)k A%;k .

As stated above, this DoS depends on one specific S € IS(G). We are now interested in obtaining a DoS which
corresponds to all the possible S € IS (G), and computing its independence polynomial. This is done by adding all
the contributions from each possible S, with the only precaution that each configuration can be enumerated at most
once. To enforce this condition, let us consider that if v; € S, then C; can take any configuration but cannot be
unselected. Intuitively, this allows to invert our construction process by retrieving S € IS (G) from the chains that
have at least one odd selected vertex. By summation over all possible S € IS (G), our enumeration describes a family
of ISs in G, whose DoS is represented by the polynomial

IP (Gnp)y, = Z (IP (Pan2, W) — Ay, ) A%jsl = Ay _1P (G; T =

IP (Pont2, W) 1)
SeIS(@)

i (B2)
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FIG. 9. approximation ratio r after interpretation in a random CL with CL graph with initial size N = 7 and weight bias
w = 1/20. Here the approximation ratio is obtained with the distance strategy. (Left) Low-energy DoS. (Middle) Repartition
of r in increasing energy windows [Emwis, E] and for the same parameters. (Right) Repartition of r in energy windows defined
by |[AE—-1/2|<1/4forl=0,...,3.

where the subscript Ib stands for lower bound, in the following sense:
Vw e Ry, [2Y]IP (Grp),, < [#*]TP (Ghryp) - (B3)

The previous lower bound can be generalized to the CL. As pictured in Fig. 8, the CL is equivalent to the non-planar
CL upon insertion of two types of gadgets, so it remains to lower bound the DoS of possible configurations for each
gadget given the configuration of the two chains around it. In both types of gadgets, this leaves the possibility to select
at most one vertex in the central complete subgraph in the case of interpretable states, with weight 1 (crossing-with-
edge) or 2 (crossing). If |E| is the number of edges in the initial graph G, then this yields a lower bound IP (Gcy),,
for the DoS in the CL as follows:

N(N-1)/2—|E|

IP (Gew)y = (14 2)F x (14 2?) X IP (Gp)yy » (B4)

with as before
vweRy, [0¥]IP(Gew)y < ["]1P (Gev).- (B5)

More gadget-induced defects can be taken into account by considering separately the cases where zero, one or two
boundary vertices of a gadget are selected. The opposite stance can also be taken by first studying the product of the
N(N —1)/2 gadgets, and then retrieving the CL by inserting small path subgraphs. However these approaches are
less tractable and typically require more knowledge of G like its adjacency matrix.

3. Approximation ratio

In the scope of the CL embedding, the relevant approximation ratio is the one obtained after interpretation, r. For
an interpretable configuration Scr, it is always 7(f~!(Scr)). For non-interpretable configurations, it depends on the
interpretation strategy. Using the distance strategy, it would be the approximation ratio of the nearest interpretable
configurations. In the (rare) case of several equidistant configurations, we chose the approximation ratio of the last
one with respect to the order returned by the solver. Note that Sec. IV uses a different convention (choosing the
smallest approximation ratio), and justifies that the exact convention should not change the results.

In Fig. 9 (left panel), we plot the low-energy DoS obtained with the same CL graph than in Fig. 6 (a, left column),
with w = 1/20. Here the color indicates the approximation ratio r produced after applying the distance strategy. In



14

this regime where w < 1, we observe that the approximation ratio quickly decreases towards a value which is the
average 1 over all ISs of the initial graph, with sharp increases at energies allowing new defects. This is explained by
the fact that the CL DoS embeds a copy of the initial DoS at energies arbitrarily close to the ground-state energy
when w — 0. The general trend observed as a function of the typical number [ of domain walls is shown in Fig. 9
(middle and right panel). Tt indicates a slight decrease of the approximation ratio when [ increases, and this behavior
is consistent across all other random graphs (not shown). This raises the question of whether different gadgets would
lead to an increase of the variation of r with respect to [, a question we leave for further work.

In addition to studying the approximation ratio for the distance strategy, we compare in Fig. 10 the evolution with
w of the approximation ratio distribution, for both strategies. This data is for the CL of the same random graph
used in Sec. IVwith the same parameters also, except for the values of w, with 1/w € {1,3,5,14}. The black lines
correspond to the average approximation ratio obtained when sampling at random a configuration in an energy window
[Evwis, Evwis + AE].

Here, the value w = 1 is particularly interesting, since in the literature w is typically restricted to w < 1/2 [18, 23|. This
constraint ensures that the weights defined in Eq. (4) are all positive, and thus that any defect in the antiferromagnetic
ordering has a positive energy cost. With w > 1/2, some defective configurations become energetically favored
compared to interpretable configurations, so that the CL ground state (and the low energy states) is in general not
interpretable. Nevertheless, an interpretation strategy can still correct them and provide an approximation ratio
r = 1. This is what we observe in Fig. 10, where states with AE < 1/2 — w are still interpreted correctly by both
strategies.

For the deselection strategy, this can be explained as follows. Suppose one starts from an interpretable CL configuration
and add defects at random. If only domain walls are considered, adding a defect to a selected chain (in the sense
of App. E, that is when the chain is antiferromagnetically ordered and its endpoint with weight 1/2 + w is selected)
costs an energy 1/2 4+ w, while adding a defect to an unselected chain costs an energy 1/2 — w. By construction,
for 0 < w < 1/2, both cost energy, so that interpretable states are favored. But for w > 1/2, adding a defect to an
unselected chain is energetically favorable, while adding a defect to a selected chain is energetically prohibitive. In
this w regime, low energy states therefore contain defects in chains that would otherwise be unselected. The strategy
of deselecting defective chains then allows to recover good solutions to the original MIS problem despite the presence
of potentially many defects. Finally, we point out that this argument also holds for gadget-induced defects with a
higher energy cost (like 3/2 — w).

4. Effect of the parameter w

Our computations use random unweighted graphs G generated with N € {3,...,7} vertices and with an edge
probability p = 1/2. The ordering of the vertices, on which their CL embedding graph depends, is thus chosen
at random. These graphs have in average 5 (for N = 3) to 22 (N = 7) ISs, and a MIS size |MIS| going from 1 to
4. In each resulting CL graph, the embedded DoS thus spans a quite restricted energy window with |[MIS| 4 1 peaks
that are evenly spread across AE € [0, 2w|MIS|]. An interesting consequence is that some visual features of the DoS
that depend on w - [MIS| can be deduced for large graphs (high |MIS|) from small graphs, simply by tuning w. In the
main text, the values of 1/w are taken in [3,20]. For several values this implies that the upper bound of this reduced
energy window is always less than 1 and thus that all the interpretable states are energetically separated from states
with domain walls, like in Fig. 6.

The regime of particularly small weight bias is illustrated in Fig. 11 and is the basis of our analysis with respect to
the domain wall number [ in the main text. Recall that in the case of path graphs, under our weighting convention, a
domain wall always induces a weight reduction by 1/2+w. This remains true in the CL graph, except for some gadget
induced-defects. Indeed, due to the presence of vertices with weight 2 in the non-crossing gadget shown on Fig. 8 b),
some defects are associated with a weight decrease 3/2 £ w. Since 3/2 is itself a multiple of 1/2, any configuration
has an energy which is an integral multiple of 1/2 in the limit w — 0%,

To sum up, at small values of w, the interpretable states are located in a narrow energy window above the MWIS.
The width of this embedded DoS scales linearly with N for a broad class of random graphs [38], but finding its exact
width (or equivalently the MWIS weight in the initial problem) is itself an NP-complete problem [7]. The regime of
small w has the advantage of increasing the fraction 7(F) for small enough E, meaning that annealing outputs are
more likely to be interpretable. The downfall is that interpretable states with a poor approximation ratio are also
more likely to be found, decreasing the quality of the output after interpretation.

On contrary, large values of w penalize such sub-optimal interpretable solutions by endowing them with a high
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FIG. 10. Distribution of the approximation ratio obtained with the distance strategy (first two rows) and with the deselection
strategy (last two rows) as described in Sec. IV and with the same graph used for Fig. 7. As before, the distribution for each
value of 1/w € {1,3,5,14} is shown with the actual DoS (first and third rows) and after cumulating the DoS in increasing
energy windows [Enwis, E] (second and last rows). Black lines: average r obtained when sampling at random a configuration
in the increasing energy window.

energy. This different regime, however, is plagued by the small energy 1/2 — w of defects, making non-interpretable
configurations more likely to be found even at about ~ 1 above the groundstate energy.

5. Example of high-d configuration

In Fig. 6, the highest distance d that is achieved (in the probed energy range) is d = 70. We illustrate in Fig. 12
a configuration that achieves this distance (left pannel) and highlight a possible choice of d bitflips to interpret it
(right panel). Despite the hardness to interpret it, this configuration is located at a relatively low energy E such that
AE ~ 2.

Appendix C: Subdivision embedding
1. 2D and 3D graph subdivisions

We discuss in this section a different kind of embedding than the CL scheme. Given a graph, an even-edge
subdivision is the operation of inserting an even number of vertices vy,...,vop in a given edge. The new edges



16

w=1/4 w=1/10 w=1/20
107 86
50

0 40
U 105

10
= 30
e
(V)]
G 103 20
o
= 10

10!

10° 4 °
n 1071
()] ]
T 1072 4 -1
-+ E
wn _3 ]
ua 10
5 1073
uL_ ]

1075 3

10-6 1 , LL o

0 1/2 1 3/2 0 1/2 1 3/2 0 1/2 1 3/2
AE AE AE

FIG. 11. Effect of the weight bias w for three values of 1/w € [4,10,20] on a random CL graph with initial size N = 6. (Top)
DoS of the CL graph with the usual weight profile W,,. When w — 0, interpretable states corresponding to sub-optimal
solutions in the initial graph are not energetically penalized. As a result, the energy of any configuration is given by the
energy of its defects, which is approximately an integral multiple of 1/2. (Bottom) Corresponding distribution of the fraction
of d-interpretable states after cumulating with respect to E, like in Fig. 6.

are (v;,v1), (v1,v2),..., (vapr, vy), so that the initial edge has been replaced by an even-length path subgraph.

Even-edge subdivisions have been used to embed non-planar or non-UD graphs into UD graphs [1-3]. This techniques
can be generalized in 3D where the analogous to UD graphs is the class of unit-ball graphs [4, 17] (for which efficient
approximation schemes also exist [13]).

Because even-length path subgraphs are used here to embed the state of a pair (v;,v,) of adjacent vertices in G, the
two antiferromagnetic configurations are not in one-to-one correspondence with the three possible configurations for
(vi, vy). The generally used convention is thus that the antiferromagnetic states of the inserted path only encode the
case when one vertex at the endpoints is selected. When the path has one domain wall, the configuration can be
considered as frustrated and discarded [4], or both endpoints can be considered to be unselected [1]. In the following
we adopt an intermediate stance where interpretation is done by contracting the subdivided edges to retrieve the
embedded graph. Independence violations are discarded, typically by deselecting the vertices in violation. Note that
in any case, the formalization of this embedding relies on a multi-valued embedding map f with respect to the criteria
discussed in the main text, whence a larger domain of definition for the interpretation map f~!.

2. Limitations of interpretability and weight profile

Here, we point out that subdivision embedding schemes are prone to independence violation upon interpretation in
unweighted subdivided graphs. An example of this issue is given in Fig. 13. The instance of initial graph (top)
has the particularity of having multiple odd-length cycle subgraphs. (The fact that it is UD and connected bears no
importance here.) By performing arbitrary even-edge subdivisions, one obtains an embedding graph where the number
of odd-length cycle subgraphs remains identical (bottom). However, odd-length cycles have a highly degenerate MIS
akin to the one in unweighted path graphs P,y , with at most one domain wall. Our example builds upon this property
so that upon interpretation, subdivided edges can be interpreted into initial edges where both endpoints are selected,
namely they lead to an independence violation that must be discarded. Furthermore, if an MIS of this embedding
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FIG. 12. (Left) Non-interpretable configuration taken from the configurations shown in Fig. 6, here with the distance d = 70.
Four domain walls are highlighted in light red, in good agreement with the energy AE ~ 2 of this configuration. (Right)
Example of 70 vertices that should be flipped to reach the closest interpretable configuration.

(b)

FIG. 13. Initial graph (b) and embedding graph (a) in a pathological example of even-edge subdivision. If left unweighted,
the embedding graph has a highly degenerate MIS. Upon interpretation by edge contraction (b), the average number of
independence violations (red edges) scales linearly with the vertex count of the initial size.

graph is taken at random, then each cycle has a non-zero probability (here 1/2) to have a domain wall and the
average number of violations scales linearly with the graph size. Note that the initial graph is connected, showing
that odd-length cycles can give raise to independence violation even when embedded in more complex graph. The
initial graph is also UD and with small maximum degree, for the clarity of representation.

This example generally proves that graphs with odd-length cycle subgraphs are not good candidates for unweighted
even-edge subdivisions. In theory, this issue can be avoided by adopting a weight profile like the W, from path graph
that energetically penalizes domain walls. This solution faces two obstacles in practice. First, as shown in the main
text, imperfect UD-MWIS optimization still raises interpretability issues. In the case of subdivided graphs, this is
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expected to yield states with multiple independence violations akin to the example of Fig. 13.

A second obstacle is that the weight profile is itself constrained by experimental needs. For Rydberg atoms, the
van der Waals interaction has long-range effects that are not taken into account in the model of UD graphs. In
particular, higher detunings have to be applied to the atoms at the corner of the lattice or with a high number of
neighbours [1, 5, 17]. This modification aims at counteracting the long-range repulsion between the second-nearest
neighbors. However, according to the previous discussions, this causes an adversarial effect with respect to the weight
profile W,,. This weight profile penalizes defects by having lower weights on the endpoints of the antiferromagnetic
chains than on the inner vertices. This suggests that subdivision embeddings face the issue of degenerate domain
walls, with constraints on the weight profile that would otherwise be used to alleviate these defects.

Appendix D: Mitigation

In this section, we study a weight profile on the CL: embedding that is intended to penalize the localization of defects in
the bulk of the CL graph. The motivation of this approach is to extend the defect penalization from the weight profile
W, introduce in the main text, which worked by lowering the weights on the endpoints of path graphs. However,
this modification has to satisfy an energy rescaling condition to ensure it describes the realistic constraint that the
sum of all weights (or detunings in the case of Rydberg atoms) is a constant. We will see the modified weight profile
has unwanted effects because of this condition, but that it is beneficial to the interpretation if the energy budget is
increased.

1. Modified weight profiles
a. Case of paths graphs

Let Pony be some path graph with vertices vq,...,vsn and edges between v;,v;41. For each vertex v;, we introduce
its distance to the endpoints d.(v;) = min(i,2N — i) € N. We seek to modify the weight profile W,, from Eq. (4) in
order to penalize the presence of domain walls with a high distance to the endpoints. To do so, let us introduce the
penalty function 7 defined by

Yp>0, Vo>l YneN, w(n: pv)=(nt 1)t (D1)
A generalized weight profile Ww%y to Eq. (4) is then
W (00) = Wap(0s) - 7 (de(03); 1,0) (D2)

This weight profile on Py inherits from d. and W,, the properties required for an embedding such as the weight
ordering condition from Eq. (2). In addition, the 7(n; u,v) factor penalizes the localization of domain walls far from
both endpoints of Pyy.

b. Case of the CL graph

This scheme can be generalized to the CL embedding at the cost of a more refined weight profile. We still use the
gadgets from Ref. [18] which are delimited as blocks of 4 x 4 sites on a grid lattice. The CL graph can in this case be
partitioned in 4 x 4 blocks where some blocks do not correspond to gadgets but rather to pairs of vertices from the
diagonal, horizontal and vertical boundaries. For each block corresponding to a gadget or placed on the diagonal, we
define its block distance to the endpoints b, € N as proportional to the distance of this block to the two blocks located
at the endpoints of the diagonal in the CL graph. A block distance b, = 0 is assigned to all remaining blocks, which
are either on the vertical or on the horizontal boundary of the CL. Each vertex v; being located in a block with a
well-defined bock distance b., we use the notation b.(v;) to denote this mapping. The weight profile W, this time
over the CL graph, is then modulated to define a new profile V~Vw, v using the block distance:

W (Vi) = Wy (03) - 7 (be (v3); p,v) (D3)



19

u=0 u=0.5 u=1
107 ﬁé
K
u Hall 30
0 105 - | — !!H!Ei
T 1 i c I 20
+ - §E o | al 1
0 B R | Il . . TR 1IR] ! 5
“6.103_ TRUNA I [ 10
z 1o T A T |
10* i | ——H M
1
100 3 ”I-In _‘HHH Re)
1071 4
o E -1
© 1072 3
+J E
n _3:
‘*6 10 '§
. 4]
g 1071
& ]
10_5'§
10-6 -| T T T T T T T T -0
0 1 0 1 2 0 1 2 3 4
AE AE AE

FIG. 14. (Top) Low-energy DoS for three set of parameters of the modified weight profile Wi, ., for a random CL graph
with initial size N = 5. The indicated energies correspond to the energies in the CL before renormalization by the total energy
(sum of all detunings), which depends on the weight profile. However the probed window is chosen so that the same fraction
of the total energy is shown in all plots. (Bottom) Corresponding distribution of the fraction of d-interpretable states after
cumulating with respect to the energy.

The weight ordering property and the optimality of the embedded MWISs remain guaranteed. Indeed, since all
vertex in each gadget are modulated by the same factor, the 3 or 4 interpretable sub-configurations in each gadget
have the same weight irrespective of (u,v). The fact that m (be(v); p,v) = 7(0; p,v) = 1 for any vertex v with
Ww(v) = 1/2 & w ensures that all the weight biases undergo the same modulation. (Note that other weight profiles
with different weights inside the gadgets could also be engineered.) Eventually, this weight profile can be seen as a
generalization of the one from Ref. [18], which is recovered by taking (u,v) = (0,1).

2. Results

We study the low-energy DoS for v = 1 and u € [0,0.5, 1] in one of our random CL graphs with initial size N = 5. The
sum of the weights Zvi cGor Ww,u,,,(vi) in the graph increases with p. Since this quantity would be proportional to
the sum of all detunings used with an array of Rydberg atoms, some rescaling is needed to ensure we model different
weight profiles with the same amount of energy supplied through the detunings. We do so by studying the low-energy
DoS in a window [Emwis, E,] such that the ratio between E,, — Exwis and ZmeGCL Wi v (v;) is the same for all
values of p, with E,—q = 2.

In Fig. 14, we plot the three resulting low-energy DoS. We see that the modified weight profile bends the curve of
the fraction 74(E), at least for small distances d. After the energy renormalization both the value of 74(E) and the
lowest-energy of non-interpretable states decrease when g increases. These observations suggest the energy rescaling
indirectly favors defects with a low b, in a way that dwarfs the benefits from penalizing high-b. defects, ultimately
making the modified weight profile detrimental to the interpretation of approximate UD-MWIS solutions.

Despite the unwanted variation in the distribution of 74(E), we verify that the weight profile Ww,u,y does penalize
defects with a high b as follows. Given a configuration S in the CL graph and a vertex v;, we denote by &(v;|S) € N
the number of domain walls located at v; (and at least one of its neighbors). This is done by looking for two successive
unselected vertices along each chain. In the crossing (resp. non-crossing) gadgets, this approach readily generalizes
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FIG. 15. Distribution of the defects in a CL graph corresponding to the probed configurations from Fig. 14. We observe that
increasing p leads to relatively less defects located at the center of the CL.

FIG. 16. (Left) Example of a chain as defined in App. D 2, where gadgets act by splitting some vertices (lighter colors). Thanks
to this, it is possible to define a parity along the chain (red and green colors) and to identify any defect as the succession of two
different colors with no selected vertex. (Right) Example of path nodes (red) and gadget nodes (black) as defined in App E.
The CL can be partitioned between the path nodes of all N chains and the gadgets nodes. In an interpretable configuration,
the path nodes have an antiferromagnetic ordering specified by wether the corresponding path is selected or not.

by considering that 1 (resp. 2) vertex along the chain undergoes a vertex splitting, so that the corresponding defect
is identified as 3 (resp. 4) unselected vertices. An example is given in Fig. 16. (Note that if two or more defects are
adjacent one vertex v; can have &(v;]S) > 1.) The value of £(v;]|S) is then summed across all probed configurations,
all other parameters being the same as in Fig. 14. For each u, the result is linearly remapped so that its extremal
values across all v; are 0 and 1. The remapped value is plotted in Fig. 15 and can be understood as a measure of
the prevalence of defects across the CL graph. As expected, we observe that for higher values of p than the default
w =0, vertices with a high block distance b. are energetically penalized.
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Appendix E: Finding the nearest interpretable state as a QUBO problem

Here we describe the task of finding the nearest interpretable state of a CL configuration S as a QUBO problem
closely related to an MWIS problem on a subgraph of the original graph.

We want to minimize the distance d between a fixed configuration S and any interpretable configuration Sj,;. This
distance can be decomposed into contributions from path nodes (paths are indexed by p) and gadget nodes (gadgets

are indexed by (p, q))
d= Z dp+ ) dy. (ED)

p>q

In this appendix, we use the following definitions. Gadget nodes are either i) the central node with 4 edges in the
crossing-with-edge gadget, or ii) the central 4-clique in the crossing-without-edge gadget. Path nodes are all the other
nodes and they can be grouped by path in a straightforward way. An example is shown in Fig. 16 (right), where all
vertices along a path are colored depending on wether they are considered as path nodes (red) or gadget nodes (black).
In an interpretable state, path nodes selection is determined only by the status (selected/unselected) of the path in
which they belong, any ambiguity has been moved out to gadget nodes. We denote n, = 0 if path p is unselected in
Sint and n, = 1 if it is selected.

For each path p, denote dg (d}D) the distance generated from S by deselecting (selecting) path nodes along path p
(excluding gadget nodes). Then we have

dp = d) + (d}, — d))n. (E2)

In an interpretable configuration, each gadget can be in at most 4 states, corresponding to all possibilities of selecting
or deselecting adjacent paths, which we label by 00,01,10 and 11. Therefore, for a given S, each gadget (p,q) can
contribute to one of only 4 possible values of distance, which we denote d“b for a,b € {0,1}. In fact, crossing-with-edge
gadgets can only be in two states, since they are a single node in our deﬁnltlon For these, we w1ll still use the same
labels and keep in mind that d)} = d}9 and set d}} = 0 since the case where both p and ¢ are selected does not exist

Pa pq
in an interpretable state. The contribution of an arbitrary gadget (p,q) to the distance is therefore

dpq = dgg[l —np)[l = ngl + dg};[l = nplng + dégnp[l —ngl + dglulznz)”q- (E3)
For crossing-with-edge gadgets this simplifies to
dpq = dog + [np + ngl[dy — dool, (E4)
using the fact that with such gadget, n,n, is always zero.
All together, we see that d is a quadratic form
d=C+ Z Dyny, + Z Qpgnpng (E5)
p>q

which must be minimized under the constraint that {n,} should form an independent set of the original graph G.
This constraint can be formally introduced with a large extra term @), for each edge (p, ¢) of G, namely

d= C+2Dpnp+ Z Qpgnpng + Z qunpnq (E6)

(p,q)€EE (p.9)€EE

where E is the set of edges of G, E its complementary, and Qpq > @/, D,y. In this form this is a QUBO problem.
We now show the proximity of this problem to an instance of MWIS. Observing that the quadratic term @ only
comes from crossing-without-edge gadgets, it can be seen as a perturbation compared to the stronger independence
constraint. If we ignore it, the task become equivalent to maximizing

F=> (d)—d)n, (E7)

under the independence constraint. Paths p such that d,(0) < d,(1) can be ignored, since they must be unselected
in the optimal state (if it was not the case, then deselecting it would increase f without breaking the independence
constraint). We can thus remove these paths from the optimization and we are left with positive weights only.
Therefore, this problem is equivalent to finding an MWIS on the subgraph of the initial graph composed of those
nodes where d,(0) > d,(1), with weights d,(0) — d,(1). Informally, d,(0) > d,(1) means that the path p is closer
to being selected than unselected in S. Interestingly, this tells us that, in the search for the distance, paths that
are closer to being unselected can be set to unselected right away, if one is happy to ignore the contribution from
crossing-without-edge gadgets.
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